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Abstract
Background: Childhood hearing impairment affects language and cognitive de-
velopment. Profound congenital sensorineural hearing impairment can be due to 
an abnormal cochleovestibular nerve (CVN) and cochleovestibular malformations, 
however, the etiology of these conditions remains unclear.
Methods: We used a trio‐based exome sequencing approach to unravel the underly-
ing molecular etiology of a child with a rare nonsyndromic CVN abnormality and 
cochlear hypoplasia. Clinical and imaging data were also reviewed.
Results: We identified a de novo missense variant [p(Asn174Tyr)] in the DNA‐
binding Homeodomain of SIX1, a gene which previously has been associated with 
autosomal dominant hearing loss (ADHL) and branchio‐oto‐renal or Branchio‐otic 
syndrome, a condition not seen in this patient.
Conclusions: SIX1 has an important function in otic vesicle patterning during em-
bryogenesis, and mice show several abnormalities to their inner ear including loss of 
inner ear innervation. Previous reports on patients with SIX1 variants lack imaging 
data and nonsyndromic AD cases were reported to have no inner ear malformations. 
In conclusion, we show that a de novo variant in SIX1 in a patient with sensorineural 
hearing loss leads to cochleovestibular malformations and abnormalities of the CVN, 
without any other abnormalities. Without proper interventions, severe to profound 
hearing loss is devastating to both education and social integration. Choosing the cor-
rect intervention can be challenging and a molecular diagnosis may adjust intervention 
and improve outcomes, especially for rare cases.
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1 |  INTRODUCTION

Congenital sensorineural hearing loss (SNHL) affects 2–3 
per 1,000 live births (CDC, n.d.). Of those children born with 
profound SNHL, it is estimated that approximately 3% of 
these children will have an abnormal cochleovestibular nerve 
(CVN; i.e., cochlear nerve aplasia/hypoplasia/deficiency). 
While many of these children have concomitant cochleoves-
tibular malformations, the etiology of both of these findings 
is not well understood. A classification system for malforma-
tions of the labyrinth has been widely adopted and is based 
on the various stages of embryogenesis (Jackler, Luxford, 
& House, 1987; Sennaroglu & Saatci, 2002). Several clas-
sification systems for abnormal CVNs have been proposed 
(Birman, Powell, Gibson, & Elliott, 2016; Buchman et al., 
2011; Casselman et al., 1997; Govaerts et al., 2003; Kari, Go, 
Loggins, Emmanuel, & Fisher, 2018), but no one single sys-
tem has been widely adopted. More recent literature (Birman 
et al., 2016; Kari et al., 2018) has proposed classifying ab-
normal CVNs based on the number of nerve bundles seen in 
the lateral internal auditory canal (IAC) on high‐resolution 
T2 structural magnetic resonance imaging (sMRI). Normal 
individuals have 4 and the cochlear nerve is considered nor-
mal caliber if its diameter is roughly equal to that of the facial 
nerve. Abnormal is considered any individual who has less 
than 4 or when the cochlear nerve is considered small (i.e., 
hypoplastic).

Cochlear implants (CIs) have been developed to restore 
hearing to a deaf ear by directly stimulating the auditory 
nerve. The hearing and language outcomes in children im-
planted before the age of 2 can vary but overall are extremely 
promising in allowing deaf children to hear near normally 
or normally and communicate like their normal hearing 
peers (Eisenberg, Fink, & Niparko, 2006; Fink et al., 2007; 
Niparko, 2004; Niparko et al., 2010). Children with cochle-
ovestibular malformations had once been considered poor 
CI candidates but research has shown that their hearing 
and language outcomes are similar to their peers with nor-
mal labyrinthine architecture (Buchman et al., 2004, 2011). 
Children with abnormal CVNs, however, demonstrate much 
less robust outcomes with CIs. Despite the advent of audi-
tory brainstem implants (ABIs) that bypass the CVN entirely 
and stimulate the cochlear nucleus directly at the brainstem, 
hearing, and language outcomes in children with abnormal 
CVNs who receive ABIs are similarly variable and at times 
no different than that of those with CIs (Birman et al., 2016; 

Buchman et al., 2004, 2011; Dettman et al., 2011; Farhood et 
al., 2017; Kari et al., 2018; Merkus et al., 2014; Sennaroglu et 
al., 2011; Young, Kim, Ryan, Tournis, & Yaras, 2012).

Children with abnormal CVNs who receive CIs exhibit 
outcomes that range from absolutely no benefit with no 
sound awareness at all to children who are able to achieve 
spoken language and open set speech recognition (Buchman 
et al., 2011; Freeman & Sennaroglu, 2018; Kari et al., 2018; 
Young et al., 2012). Unfortunately, there are no preopera-
tive audiological, neuroimaging or neurophysiological data 
that can predict a child's response and outcomes with a CI 
or ABI. Consequently, children must undergo several inter-
ventions during a limited and precious window of time for 
acquisition of spoken language. Any delays in their ability to 
access sound has devastating consequences for their spoken 
language development.

Our prior work has identified de novo genetic variants in 
GREB1L in children with abnormal CVNs (Schrauwen et al., 
2018). Of note, this work demonstrated that two individuals 
shared different loss‐of‐function variants in the same affected 
gene and similar phenotypes. Whereas the labyrinthine archi-
tecture and hearing status of children with abnormal CVNs 
are extremely variable, in these two individuals, their lack of 
any benefit from a CI and their absence of a CVN intraoper-
atively were similar (likely only facial nerve was present on 
both sides of both individuals). In other words, these children 
presented with more severe variants of CVN abnormalities, 
both had profound bilateral SNHL, both had no benefit from 
a CI, and neither had significant comorbid conditions or syn-
dromes. The finding that these two individuals had mutations 
in the same gene was significant. Understanding the molecu-
lar biology of these and other cases could potentially lead to a 
genetic test preoperatively that may portend poor CI outcome 
and potentially save several individuals the need for sequen-
tial interventions that may not benefit the child.

In this paper, we evaluated the underlying molecular etiol-
ogy of a child with a nonsyndromic malformation of the inner 
ear and CVN via trio‐based exome sequencing.

2 |  MATERIAL & METHODS

2.1 | Ethical compliance
Informed consent was obtained from all participants. This 
study was done following the guidelines of the Institutional 
review board (IRB), and approval for human research was 
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obtained (University of Southern California #HS‐14‐00513‐
CR002 and Western IRB #20120512).

2.2 | Clinical evaluation
This child was identified with hearing loss with the newborn 
hearing screen and was later evaluated for his hearing loss 
by a neurotologist at a tertiary academic referral CI center. 
The evaluation included a comprehensive history and neu-
rotologic physical exam. His evaluation for a CI then also 
included a comprehensive audiological evaluation in which 
the testing performed was age appropriate and included otoa-
coustic emission testing, auditory brainstem response test-
ing as well as behavioral audiometry. Pure tone audiometric 
testing and age appropriate speech understanding were eval-
uated. As part of his CI evaluation, he also underwent imag-
ing with a magnetic resonance imaging (MRI) of the IACs. 
Clinical characteristics and imaging findings were reviewed 
by a neurotologist and an experienced neuroradiologist.

2.3 | Exome sequencing
A DNA sample from the affected individual (male) and par-
ents (family CN8_0013) was collected using the iSWAB 
DNA buccal collection kit (Mawi DNA Technologies) fol-
lowed by extraction with the DNeasy Blood & Tissue kit 
(Qiagen). Exome sequencing was performed on both the 
affected individual and the parents. Exomic libraries were 
prepared with the TruSeq Exome Library Prep Kit, follow-
ing the manufacturer's protocol (Illumina Inc). Sequencing 
was performed by 100  bp paired‐end sequencing on a 
HiSeq2500 instrument (Illumina Inc), with an average target 
coverage of 40x. Alignment to the Human genome (Hg19/

GRCh37) was performed using the Burrows–Wheeler al-
gorithm (BWA‐MEM) (Li & Durbin, 2010). Reads were 
sorted, polymerase chain reaction (PCR) duplicates were 
removed, base quality recalibration and indel realignment 
were performed using Picard and the Genome Analysis 
Toolkit (GATK) (McKenna et al., 2010). Variants were 
called jointly with HaplotypeCaller and recalibrated with 
GATK, and annotation was performed with ANNOVAR 
(Wang, Li, & Hakonarson, 2010). Variants with a high 
allele frequency in the Genome Aggregation Database 
(gnomAD) were removed (MAF >0.005). Bioinformatic 
prediction scores from dbNSFPv3.5 and dbscSNV1.1 were 
used for variant evaluation (Jian, Boerwinkle, & Liu, 2014; 
Liu, Wu, Li, & Boerwinkle, 2016). We considered various 
inheritance models, including de novo, autosomal reces-
sive and X‐linked. The gender of each sample was con-
firmed by evaluating the zygosity of the X‐chromosome 
variants. Maternal and paternal relationships were verified 
by assessing the percentage of shared variants between 
parent/child.

Sanger sequencing was performed to validate variants of 
interest. In short, a PCR was performed and direct sequenc-
ing of the PCR product was performed on an ABI3130XL 
sequencer (Applied Biosystems Inc.).

3 |  RESULTS

3.1 | Clinical findings
Here we describe an otherwise healthy male child who was 
born with bilateral profound SNHL, his bilateral unaided 
pure tone thresholds ranged 100–115  dB HL from 500 to 
8000 Hz. The patient demonstrated no abnormalities of his 

F I G U R E  1  (a) Pedigree showing the de novo variant identified in SIX1 in the affected child. (b) MRI high‐resolution axial T2 sequences 
showing the (right) hypoplastic cochlear bud (white arrow) emanating from the vestibule (white arrowhead) and (left) oblique cuts perpendicular 
through the IAC showing the three nerve bundles in the lateral IAC (normal is 4). (c) MRI high‐resolution axial T2 sequences showing (right) 
normal cochlear architecture (white arrow) and the normal vestibule (white arrowhead) and (left) oblique cuts perpendicular through the IAC 
showing four nerve bundles in the lateral IAC. IAC, internal auditory canal; MRI, magnetic resonance imaging
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genitourinary system, cardiac system or other organ system. 
Renal ultrasound and electrocardiogram testing confirmed 
no abnormalities. Imaging (see Figure 1) demonstrated a hy-
poplastic cochlear bud with an incomplete basal turn, absent 
modiolus and absent or bony cochlear aperture. The ves-
tibular system was also noted to be abnormal with a small 
lateral semicircular canal. IAC diameters were normal bi-
laterally. The child had three nerves in both lateral IACs, 
normal being four nerves. He underwent a left‐sided CI and 
continued to use a hearing aid on his right ear. Aided testing 
with his hearing aid and CI used together demonstrated mild 
hearing loss thresholds (25–40 dB) and language assessment 
demonstrated ability to acquire closed set speech recogni-
tion at only 3 months postop from his CI surgery (52% Word 
Intelligibility on Picture Identification, WIPI).

3.2 | Genetic screening
We identified a novel de novo variant (NM_005982:c.520A>T:p.
[Asn174Tyr]) in SIX1, which previously has been associated 
with autosomal dominant hearing loss (ADHL) and branchio‐
oto‐renal (BOR) or Branchio‐otic (BO) syndrome (Mosrati et 
al., 2011; Ruf et al., 2004). Both maternity and paternity were 
confirmed, and the de novo variant was verified via Sanger 
sequencing. This variant is located in the DNA‐binding ho-
meodomain (HD) and is absent from genomic databases (gno-
mAD). It is predicted damaging by various bioinformatic tools 
(Table S1), and is located at a residue that is highly conserved 
amongst species (GREP++RS: 5.96; phastCons20waymam: 
1.0) (Liu et al., 2016). The Combined Annotation‐Dependent 
Depletion score of this variant is 29.1, which indicates it is in 

T A B L E  1  Overview of variants reported in SIX1 and the associated phenotypes

Exon Domain Variant (NM_005982.3) Inheritance References Phenotype Treatment(s)

1 SIX domain c.50T>A; p.(Val17Glu) AD Kochhar et al., (2008); 
Patrick, Schiemann, Yang, 
Zhao, and Ford, (2009)

BOR/BO Unknown

1 SIX domain c.218A>C; p.(His73Pro) AD Kochhar et al., (2008); 
Patrick et al., (2009)

BOR/BO Hearing aids

1 SIX domain c.317T>G; p.(Val106Gly) AD Kochhar et al., (2008); 
Patrick et al., (2009)

BOR/BO Unknown

1 SIX domain c.328C>T; p.(Arg110Trp) AD Kochhar et al., (2008); 
Patrick et al., (2009); R. 
G. Ruf et al., (2004)

BOR/BO Hearing aids

1 SIX domain c.329G>A; p.(Arg110Gln) AD Kochhar et al., (2008); 
Patrick et al., (2009)

BOR/BO Unknown

1 SIX domain c.334C>T; p.(Arg112Cys) Unknown Kochhar et al., (2008); 
Patrick et al., (2009)

BOR/BO Unknown

1 SIX domain c.364T>A; p.(Trp122Arg) AD Sanggaard et al., (2007) BOR/BO Cochlear implant

1 Homeodomain c.373G>A; p.(Glu125Lys) AD Mosrati et al., (2011); Yan 
et al., (2016)

ADHL Unknown

1 Homeodomain c.386A>G; p.(Tyr129Cys) De novo, AD Ito et al., (2006); Krug et 
al., (2011); Patrick et al., 
(2009); Ruf et al., (2004); 
Yang et al., (2014)

BOR/BO Unknown

1 Homeodomain c.397_399delGAG; 
p.(Glu133del)

AD Häfner et al., (2000); 
Patrick et al., (2009); Ruf 
et al., (2004)

BOR/BO; 
ADHLa

Unknown

1 Homeodomain c.519G>C; p.(Lys173Asn) Unknown Unzaki et al., (2018) BOR/BO Unknown

1 Homeodomain c.520A>T; p.(Asn174Tyr) De novo This study ADHL due 
to cochlear 
and CVN 
abnormality

Hearing aid and 
cochlear implant

1   c.560+3A>T; splicing Unknown Krug et al., (2011) BOR/BO Unknown

Notes: Variant c.746C>T; p.(Pro249Leu) in exon 2 was reported in a patient with BOR (Krug et al., 2011), however was not included here due to its higher than 
expected heterozygote frequency found later in gnomAD.
Abbreviations: AD, autosomal dominantly inherited or presumed autosomal dominantly inherited variant based on family history; Unknown: unknown inheritance but 
heterozygous germline variant; BOR/BO, Branchio‐otic (BO) or branchio‐oto‐renal (BOR) syndrome spectrum disorders.
aPreviously reported as nonsyndromic hearing loss, but a patient was found to have renal involvement later (Ruf et al., 2004). 
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the top ~0.1% of the most deleteriousness variants across ge-
nome‐wide assessed variants.

4 |  DISCUSSION

In the current study, we performed exome sequencing to iden-
tify a de novo variant in SIX1 in a patient with a nonsyndro-
mic rare malformation of the inner ear and CVN. SIX1 is a 
homeobox protein that controls organ development and is a 
key regulator of otic vesicle patterning during embryogenesis. 
Six1‐deficient embryos lack inner ear structures, including a 
cochlea and vestibule, whereas their endolymphatic sac was 
enlarged (Yajima et al., 2014). Disruption of SIX1 leads to 
aberrant numbers of vestibulocochlear ganglion neurons 
and hair cells (Kirby & Collazo, 2006). In addition, SIX1 is 
widely expressed in neural crest cells that colonize the pre‐
otic mesenchyme and a variety of cephalic neural crest and 
mesoderm‐derived cell types and tissues (Fonseca, Couly, & 
Dupin, 2017).

Variants in SIX1 have previously been involved in both 
ADHL and BOR/BO spectrum syndrome. SIX1 has two 
evolutionary conserved domains, the N‐terminal SIX1 do-
main and the HD, which are mainly involved in protein–
protein interactions (including EYA1) and protein‐DNA 
binding, respectively. Variants in the HD, however, have 
been reported to diminish both SIX1‐EYA1 protein binding 
and SIX1‐DNA binding (Kochhar et al., 2008). Almost all 
variants that have been reported so far in ADHL and BOR/
BO are located in either of these two evolutionary conserved 
domains (Table 1), and are mainly missense variants. The 
SIX1 variant we identified, p.(Asn174Tyr), is located in the 
DNA‐binding HD domain, is predicted damaging by various 
bioinformatic tools (Table S1), and lies adjacent to an amino 
acid that was found altered in a BOR patient (Table 1).

Our patient carries a de novo variant in SIX1, and presents 
with bilateral profound SNHL, a hypoplastic cochlear bud, 
a small lateral semicircular canal and only three nerves in 
both lateral IACs. All previously identified nonsyndromic 
ADHL variants are also located in the same HD domain 
(Table 1), however, some of these ADHL patients were pre-
viously investigated via temporal bone computed tomogra-
phy and showed no inner ear malformations (Mosrati et al., 
2011). Additional prior studies often do not describe any 
imaging data of the inner ear, although one patient with 
BOR was reported to have enlarged vestibular aqueducts 
and some BOR patients were reported to have inner ear de-
fects without any description of these malformations (Ito, 
Noguchi, Yashima, & Kitamura, 2006; Sanggaard et al., 
2007). Hypoplastic cochleae and labyrinths have been de-
scribed in some cases of BOR with unknown genetic back-
ground (Kemperman et al., 2001, 2002; Ritter & Martin, 
2018). Six1−/− mice display malformations of the outer, 

middle, and inner ears (Zheng et al., 2003). Six1−/− em-
bryos also show malformations of cranial sensory ganglia, 
including a loss of the VIIIth and distal VIIth sensory gan-
glia. No VIIIth nerve projection could be identified, and a 
misrouting of the VII branchial motoneurons was found as 
well in these embryos (Zou, 2004).

This child underwent a CI on the left side at the age of 4 
and continued to use a hearing aid on his right. He was able 
to achieve closed set speech recognition (52% word intelligi-
bility by picture identification, or WIPI) only 3 months after 
his CI surgery and anticipate he will continue to progress in 
his language acquisition.

Very little is known clinically of the human clinical find-
ings in children with SIX1 variants and CVN abnormalities 
as the genetics of abnormal CVNs is poorly understood and 
many children with congenital hearing loss are not identified 
with known genetic aberrations.

In this study, we show that a de novo variant in SIX1 leads 
to nonsyndromic SNHL, cochleovestibular malformations, 
and abnormalities of the CVN (i.e., cochlear nerve aplasia/
deficiency).
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